Under and over-adiabatic electrons through a perpendicular collisionless shock: theory versus simulations

نویسندگان

  • P. Savoini
  • Y. Kuramitsu
چکیده

Test particle simulations are performed in order to analyze in detail the dynamics of transmitted electrons through a supercritical, strictly perpendicular, collisionless shock. In addition to adiabatic particles, two distinct nonadiabatic populations are observed surprisingly: (i) first, an over-adiabatic population characterized by an increase in the gyrating velocity higher than that expected from the conservation of the magnetic moment μ, and (ii) second, an underadiabatic population characterized by a decrease in this velocity. Results show that both nonadiabatic populations have their pitch angle more aligned along the magnetic field than the adiabatic one at the time these hit the shock front. The formation of “under” and “over-adiabatic” particles strongly depends on their local injection conditions through the large amplitude cross-shock potential present within the shock front. A simplified theoretical model validates these results and points out the important role of the electric field as seen by the electrons. A classification shows that both nonadiabatic electrons are issued from the core part of the upstream distribution function. In contrast, suprathermal and tail electrons only contribute to the adiabatic population; nevertheless, the core part of the upstream distribution contributes at a lower percentage to the adiabatic electrons. Underadiabatic electrons are characterized by small injection angles θinj≤90, whereas “over-adiabatic” particles have high injection angles θinj>90 (where θinj is the angle between the local gyrating velocity vector and the shock normal).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulations of Electron Acceleration at Collisionless Shocks: The Effects of Surface Fluctuations

Energetic electrons are a common feature of interplanetary shocks and planetary bow shocks, and they are invoked as a key component of models of nonthermal radio emission, such as solar radio bursts. A simulation study is carried out of electron acceleration for high Mach number, quasi-perpendicular shocks, typical of the shocks in the solar wind. Two dimensional self-consistent hybrid shock si...

متن کامل

Two-dimensional Full Particle Simulation of a Perpendicular Collisionless Shock with a Shock-rest-frame Model

A two-dimensional (2D) shock-rest-frame model for particle simulations is developed. Then full kinetic dynamics of a perpendicular collisionless shock is examined by means of a 2D full particle simulation. We found that in the 2D simulation there are fewer nonthermal electrons due to surfing acceleration which was seen in the previous 1D simulations of a high Mach number perpendicular shock in ...

متن کامل

Two-dimensional Full Particle Simulation of Perpendicular Collisionless Shock with a Shock-rest-frame Model

A two-dimensional (2D) shock-rest-frame model for particle simulations is developed. Then full kinetic dynamics of a perpendicular collisionless shock is examined by means of a 2D full particle simulation. We found that in the 2D simulation there is less non-thermal electrons due to surfing acceleration which was seen in the previous 1D simulations of a high-Mach-number perpendicular shock in a...

متن کامل

Electron Acceleration at a Low-mach-number Perpendicular Collisionless Shock

A full particle simulation study is carried out on the electron acceleration at a collisionless, relatively low Alfven Mach number (MA = 5), perpendicular shock. Recent self-consistent hybrid shock simulations have demonstrated that the shock front of perpendicular shocks has a dynamic rippled character along the shock surface of low-Mach-number perpendicular shocks. In this paper, the effect o...

متن کامل

ar X iv : a st ro - p h / 06 12 20 4 v 2 1 9 Fe b 20 07 Electron Injection at High Mach Number Quasi - Perpendicular Shocks : Surfing and Drift Acceleration

Electron injection process at high Mach number collisionless quasi-perpendicular shock waves is investigated by means of one-dimensional electromagnetic particle-in-cell simulations. We find that energetic electrons are generated through the following two steps: (1) electrons are accelerated nearly perpendicular to the local magnetic field by shock surfing acceleration at the leading edge of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005